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Abstract

Oscillating discrete autonomous dynamical systems admit multiple oscillatory solutions in the advent of periodic forcing.
The multiple cycles are out of phase, and some of their averages may resonate with the forcing amplitude while others
attenuate. In application to population biology, populations with stable inherent oscillations in constant habitats are predicted
to develop multiple attracting oscillatory final states in the presence of habitat periodicity. The average total population size
may resonate or attenuate with the amplitude of the environmental fluctuation depending on the initial population size. The
theory has been tested successfully in the laboratory by subjecting cultures of the flouTbieelilem to habitat periodicity
of various amplitudes. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Although all natural populations suffer temporal environmental fluctuations on some scale, experimental and
theoretical studies of population response to habitat fluctuation remain relatively rare. Few controlled experimental
studies address the effect of time-varying habitats, and most mathematical population models are autonomous.
In recent years, nonautonomous versions of classical model equations have been investigated in order to deter-
mine the extent to which fundamental theoretical principles remain valid in fluctuating environments, e.g., see
[1]. However, few connections exist between controlled, replicated experimental data and rigorously validated
models.

An exception is the controlled laboratory experiment of Jillson [2] and the subsequent model-based explanation,
predictions, and further experimentation of Henson and Cushing [3], Costantino et al. [4], and Henson et al. [5].
Jillson placed flour beetles in volumes of flour that periodically alternated between 32 and 8 g every two weeks.
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The control cultures remained in a constant volume of 20g. Total population numbers in the alternating habitat
were more than twice those in the constant habitat even though the average flour volume was the same in both
environments.

Henson and Cushing [3] and Costantino et al. [4] extended the modeling hypotheses of tfeithdtilim
model of Dennis et al. [6,7] and Costantino et al. [8,9] to include habitat periodicity. The resulting “periodic LPA
model” explained the increased average biomass observed in the 32—8 g habitat as a type of resonance in which
the inherent biological oscillation resonates with the periodic habitat [4]. Furthermore, the periodic LPA model
generated unexpected new predictions which were then tested in the laboratory [5]. When the relative amplitude
of oscillating flour volume in the periodic LPA model was set at 40% to simulate a 28-12 g alternating habitat, the
model predicted multiple attracting final states: two different 2-cycles out of phase with each other and differing
in average magnitude of animal numbers. This model forecast was successfully tested in the laboratory by placing
beetle cultures in the different (model predicted) basins of attraction of the two locally stable 2-cycles.

The resonance and multiple attractor predictions of the periodic LPA model constitute one incarnation of a general
nonlinear phenomenon. This paper presents general results concerning multiple attractors and resonance in periodi-
cally forced discrete dynamical systems. The contextual application will be periodic habitats in population biology.

Discrete autonomous (semi)dynamical systems with periodic solutions admit multiple oscillatory solutions in the
advent of periodic forcing. In general, the multiple cycles are mutually out of phase, and some of the cycle averages
may increase with the forcing amplitude while others decrease. In terms of population biology, a population which
cycles in a constant habitat is predicted to have multiple attracting oscillatory final states in the presence of habitat
periodicity. The multiple cycles differ in phase, and may differ in average total population size as well. Thus,
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Note the identity

Xt 4 j 1 = xg /Mo g (4)
If p is the minimal period ok, then thep phase shifts<8; x%; e ;ngl will be distinct. If the minimal period is
g < p; then the firsty phase shifts<8; xé; o ;xg_1 will be distinct, while the rest will be duplicates under the
identity x) = xJ ™% In this case identity (4) becomes

Xt 4/ = xg 7/ meda . (5)

Stability results will require a hyperbolicity assumption:
(A4) The matrix

0
1_[ Fy.1; xg.t//;
t=p-1
whereFy is the Jacobian df, has no eigenvalues of modulus one.

A weaker hypothesis may be substituted for (A4) when results are independent of stability:
(A4*) The matrix

0
= ] Fx-Lixg.t//
t=p—1

is invertible.

(A4) implies (A4*). Since the set of eigenvalues of the product matBxis the same as the set of eigenvalues
of BA [10], each of thep matrices[T{_,_;Fx. 1 x§.t// = [T0_,_1Fx.LixJ.t +i//;i = 0;1;:::;p — 1; of
permuted Jacobian products has the same set of eigenvalues. This fact has two relevant consequences. First, since
(A4*) holds if and only if the matrix]'[?zp_lFx a; xg.t// does not haye an eigenvalue of one, assumption (A4*) is
equivalent to the invertibility of each of the matrides Hf’:pleX.l; Xp-t//fori =0;1;::: ;p—1. Second, since
the stability of the cycle<§J depends on the eigenvalueslf[f’zp_lFx.l; x(i,.t//, all of the phase shifted solutions
xé; xg; A x°~1 must have the same stability properties when they are hyperbolic (see, e.g., [11], Theorem 9.14):

Theorem 1. AssumégAl)—(A4). The phase shifted solutiowg; x%; 22 xP7 are either all locally asymptotically
stable, or they are all unstahle

2.1. Multiple perturbed cycles

When small amplitude periodic forcing is introduced into the habitat of an oscillating population, the population
is perturbed to a new oscillatory state. The next theorem guarantees each phas@styiftiedsolutionx = x{, of
the autonomous equatidfQ.0; B; x/ = 0 is perturbed into a continuousbranchx' of p-cycle solutions of the
nonautonomous equatidfd. ;B;x/ =0as isincreased from zero.

Theorem 2. AssumgA1)—(A3) and.A4*/. Leti € {0;1;:::;p — 1}. Then there exist > 0andy > 0and a
clfuncton :.—; /— H"
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Proof. The result follows from the Implicit Function Theorem as long as the Frechét derivatikendth respect
to x evaluated at = 0 andx = x}, is nonsingular, an& isClin x and .

The Frechét derivatives df. ;B;x/ with respect tax and are the linear operatoisy : Hg — HS and
L :R — Hy defined by

I (Xt + 1/ — Fld 4t AP
1 oL (—F 1+ thxtl 1 P

which are continuous ir and by (Al). _
The Frechét derivative dK. ; B;x/ with respect tox evaluated at = 0 andx = xj is the linear operatok
defined by

x5 (Xt + 1 — Py L xb t//Ax )P
If we H{,‘ is in the kernel oL, it must satisfy the recursion formula
w.t + 1/ = Fy.1,; X(i).t//W.t/
fort =0;1;:::;p—1. Thus
0

w.0/ = Fx.1; xb.t// | w.0/
I:p—l

and so

0
= J] F-Lixg-t// | w.or =0
t=p-1

Sincel — ]_[?:p_lFX.l; x(i).t// is invertible by assumption (A4*w.0/ = 0; which impliesw = 0: Hence the
operatorL is nonsingular. |

Denote . /=x'.Thenforsmall ;x' isaC! -branch of solutions dk. ;B;x/ = Ofor which lim _ox' =
x. The branch may be expanded irasx' = x) +u' +O. 2/. Properties of the first-order terai will play a
large role in our study of the perturbed cycles.

If the inherent cycle<8 has minimal period] < p; then theq distinct phase shifted squtiorx% are perturbed
into g distinct brancheg' of p-cycle solutions as increases from zero. By continuity, the cycles on each branch
x! are in phase with the parent cyodé; hence, the distinctp-cycles are mutually out of phase. Furthermore, if
assumption (A4) holds, then by an eigenvalue continuity argumenqtpleeturbed cycles are locally asymptotically
stable (unstable) iig is locally asymptotically stable (unstable).

Now suppose the inherent cyotg has minimal period) and the input oscillatios has minimal period. The
smallest value op for which Theorem 2 applies is the least common multiple @indr:p = lcm.q;r/. Thus,
the inherentj-cycle is perturbed intq out of phasgp-cycles as increases from zero. Two questions are in order.
First, what is theminimal X
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The autonomous map (= 0) has exactly one periodic solution: the equilibrixm= 0 (periodg = 1). When
forcing of minimal periodr = 2 is introduced into the map (> 0), the equilibriumx = 0 remains as the only
periodic solution. In particular, there are no solutions of minimal peried Em.1; 2/. The problem is that the
functionF. ;x/ = 3 x is independent of whenx = 0. These kinds of degeneracies are ruled o&,ifvhen
evaluated at the inherent cycle, is invertible as a function @his is condition (6) in the next lemma and theorem.

With regard to the second question, condition (6) also impliesqad of the perturbed cycles are distinct
modulo phase shifts, where ggdr/ denotes the least common divisorgpandr. We now turn to the proof of
these remarks.

Lemma. Assume(Al)—(AS) and (A4*). Suppose thexé) have minimal period] and g has minimal periodr,
and thatx' ;i = 0;1;2;:::;q — 1; are theq perturbed branches gb-cycles guaranteed by Theorem 2, where
p = lcm.q; r/. Assume further that

F.uX .t/ =F. s;x' /= 1= 3 (6)

forall t and alli = 0;1;2;:::;q — 1 and all sufficiently small . Then for sufficiently small; a phase shift
x!'.t + m/ of a solutionx' .t/ of (2) is itself a solution if and only ih is a multiple ofr.

Proof. Consider the phase shift.t/ = x' .t + m/; with m = kr andk € {0;1;2;::: ;.p=r/ — 1}. Then
z t+U=x"t+kr+VU=F.1+ t+kr/;x't4+ke//=F.14+ .t/;z .t/

and soz .t/ is a solution.
Conversely, iz.t/ = x' .t + m/ is a solution, then

F.1+ .t/;xi.t+m_//=F.l+ izt =zt +U=x"t+m+1/
=F.1+ .t+m/x"'.t+m//

forallt,and so .t/ = .t + m/forallt by (6). Hencen is a multiple ofr sincep has minimal period. |
Theorem 3. Under the assumptions of the preceding lemma, for sufficiently smede perturbed cycles!

have minimal periodp = Icm.q;r/. Moreover, modulo phase shiftgcd.q; r/ of these perturbed cycles are
distinct

Proof. Supposed has minimal periodn. Then

F.l1+ .t/;x‘.t//:_xi.t+1/=xi.t+m+1/=F.1+ .t + m/; xVORL -0
=F.1+ .t+m/;x".t//

forallt,and so .t/ = .t + m/forallt by (6). Since has minimal period, we concluden must be a multiple
of r. Also, lim _ox' = x has periodn by continuity, and son must also be a multiple af sincex(, has minimal
periodq. Sincex' g ¢ | my:x
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For example, suppose the inherent 6-cyqle= 6/ with phases<8; xé; i xg is perturbed by 4-periodic forcing
.r = 4/ into six out of phase 12-cycle€; x;::: ;x.p = lcm.6;4/ = 12/. Then there are gc6;4/ = 2
equivalence classes modulo phase shif; x*; x2} and{x}; x®; x3}.

Roughly speaking, Theorem 3 says the result of forcing with minimal peré&dinherent oscillation of minimal
periodq is the creation of] out of phase cycles of minimal period Icgy r/ which live on gcdq; r/ different
attractors. Two extremes deserve mention. First, if an inherent cycle of minimal gemofbrced with minimal
periodp, the result igp out of phasg-cycles, none of which are related by phase shifts. Second, if an inherent
cycle of minimal periody is forced with minimal perioat whereq andr are relatively prime, the result isout of
phaseyr-cycles, all of which are phase shifts of each other.

Thus if a population oscillates with minimal perigdn a constant habitat, it will, according to its initial state,
settle on one of] possible out of phase oscillations when it is placed in a habitat fluctuating with small amplitude
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or
xtt/=xbt/+ut/ +0. Y =x§.t+il+ut/ +0. Y

for all t.
Thus, the resonance or attenuatioxbfat = 0 is determined by

drxi 174 drxd .t/w’ 1"‘dei .t/‘ W 12 . :
:_E :—E :—§ ru'.t/]1=ru':
d |0 P d o P d P

t=0 t=0 =0

If Tu'] > 0;x' isresonantat = 0;if [u'] < 0;x' is attenuant. Ifu'] = 0, higher order terms must be calculated.
For example, this is generally the case when a system at equl Tffl 0.4a-233.5(ti[sWTDfl (0)Tjfl 9.963 0 0 9.963 178.5b 9.963
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and
D =diag[F .0/;F .1/;:::;F .p—1/1;
with
F .t/ = diagF .1;xJ.t//

and
ul.p—i/
_ ulp—i+1/
v = . :
u2p—i—1
1
1=|:|eR"
1
1 .p-—il/
i 1 p—-i+d
B = :
1 . 2p-i—-1

Here the Jacobiaris, .t/ and the identity aren x n matrices, and so the block mat@isnp x np: F .1; xg.t// is
a column vector ifR"; soF .t/ is ann x n diagonal matrix with the elements Bf . 1; xg.t// on the diagonal. Thus,
Dis anp x np diagonal matrixy' andp' are column vectors iR™: Note thatZE):_olﬁi = 0and[v'] = [u'7.

It is straightforward to check tha®] ! = MP, where

j 1\
M = diag |:I— I1 Fx.t/i| ;
t=p—1+j =0
[lip_1Fx-t/  TT—paFxt/ -+ Fx.p—1/ |
| [TepFxt/ - Fx.p/

P=| Fx.p+l | [T psaFx-t/
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Proof.
p-1 ) p—-1 ) p—-1 ) p-1 _
> =Y "v'1=>[MPDB'1= MPD) B' | =10] =0:
i=0 i=0 i=0 i=0
Thus, there exis; k € {0;1;::: ;p — 1} such thaful ] > 0 and[u¥] < 0. O

In our application, Theorem 4 asserts that (generically speaking) the average total population size for at least one
of the multiple attracting oscillatory states in the periodic halsteteedshe total population size in the constant
habitat. Furthermore, at least one of the multiple attracting states in the periodic habitat has average total population
size less thanthat in the constant habitat. These results hold only for “small” forcing amplitudes; however, in
many situations the resonant and/or attenuant cycles may persist for significantly large valugsittistrated in
Examples 1 and 2.

3. Example 1: a one-dimensional map

LetF : R} x Rl — R be the generalized Ricker m&n ;x/ =b xe™® +.1— /x,and .t/ =.-1/".In
this examplen = 1 andp = 2. Eq. (2) becomes

Xt4+1U=b[l+ .—1/x.t/e ™V 1 /x.t/:

x.t/ is the population size at time the per capita probability of dying during one time intervai®e" the
fractional reduction of new recruits due to density dependent effectdy[and .—1/'] the seasonal recruitment
rate, which fluctuates around an averagé wiith periodr = 2 and relative amplitude € [0; 1/.

When = 0; the autonomous model predicts 2-cycles at many values of its parantgter2/. For example,
if b =40;c
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Fig. 1. 2-cycle solutions of the periodically forced Ricker-type map, shown as functions of amplitMdeen = 0, there are two stable

2-cycles which are simply time shifts of each other, and an unstable fixed pointinkseases from zero, one of the two locally stable 2-cycles
increases in average (solid lines), while the other decreases in average (dashed lines). The unstable fixed point is perturbed into an unstable
2-cycle (dotted lines). The attenuant stable cycle and the unstable cycle annihilate each other in a saddle-node bifurcation, while the resonant
stable cycle persists for all < 1.

In this example the dynamical systemt + 1/ = F. ; x.t// is the periodic LPA model

—Cel

L.t+1/
Pt+1 |= .10
At+1

bA.t/ exp( L.t/ — @A.t/)
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Fig. 3. Model predictions (including transients) for each of the six treatments, shown in L-stage time series and composite phase space. The
squares correspond to times when flour volume is high. The solid circles in phase space represent equilibria of the first composite map. The
upper (lower) composite fixed point for= 0:4 corresponds to the resonant (attenuant) 2-cycle.

The model therefore predicts three asymptotic regimes as indexed by the relative amplatittee habitat
fluctuation: for = 0, the stable cyclgg and its time shiﬁxé of opposite phase; for& < g, the locally stable
resonant and attenuant cychdsandx?, respectively; and for > ¢, the stable resonant cycté.

We studied three habitat sequences: a constant 20 g hab#a0f, an alternating 28—12 g habitat £ 0:4), and
an alternating 32—8 g habitat & 0:6). In each of the three habitats, we used two initial conditions,;[26Q; 150]"
and [15Q 0; 150]", for a total of six treatments. There were three replicates in each of the six treatments for a total
of 18 cultures. The detailed experimental protocol appears in [5].

The model predictions for each of the six treatments appear in Fig. 3. The model trajectories are presented both
as time series and as orbits in “composite” phase space. The latter are actually orbits of the (autonomous) first
composite map, and correspond to every other step of the time series. Black squares correspond to times when the
flour volume is high. When = 0; the model orbits for both initial conditions approach the inherent os%:lé\/hen

= 0:4; the initial condition [150200; 150" lies in the basin of attraction of the resonant 2-cyq}§, while
[150; 0; 150" lies in the basin of attraction of the attenuant 2-cylg. When = 0:6, both initial conditions lead
to model orbits approaching the resonant cy«%l_g.

Fig. 4 presents the first 40 weeks of data from six replicates, organized in the same format as Fig. 3. The multiple
cycles are seen clearly in the data whes 0:4. The complete results of this experiment and those of a follow-up
experiment are reported in detail in [5].
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M — [l — Fx.1/Fy.0/]71 0 _
B 0 [l — Fx.O/F. 171 )°

Fx.1/ 1
P= ;
I Fx.0/

By Eq. (11) and the program Maple,
—-1622
3:700x 1074

o [ ut.o/ —2428

\% 0 = )
ul. v/ 4:656x 1074

—1288

—2185

and
1622
—3:700x 10°4

o (Ulﬂ/) _ 2428
1
u=.0/ —4:656x 1074
1288
2185
Hence

—1622
3:700x 10~4

o [ ul.o/ —2428
u 0 = X
uw.1/ 4:656 x 10~4

—1288
—2185

—4:656x 104
1288
. (utor 2185
u =
ul.y 1622
—3:700x 104
2428
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