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Abstract

Oscillating discrete autonomous dynamical systems admit multiple oscillatory solutions in the advent of periodic forcing.
The multiple cycles are out of phase, and some of their averages may resonate with the forcing amplitude while others
attenuate. In application to population biology, populations with stable inherent oscillations in constant habitats are predicted
to develop multiple attracting oscillatory final states in the presence of habitat periodicity. The average total population size
may resonate or attenuate with the amplitude of the environmental fluctuation depending on the initial population size. The
theory has been tested successfully in the laboratory by subjecting cultures of the flour beetleTribolium to habitat periodicity
of various amplitudes. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Although all natural populations suffer temporal environmental fluctuations on some scale, experimental and
theoretical studies of population response to habitat fluctuation remain relatively rare. Few controlled experimental
studies address the effect of time-varying habitats, and most mathematical population models are autonomous.
In recent years, nonautonomous versions of classical model equations have been investigated in order to deter-
mine the extent to which fundamental theoretical principles remain valid in fluctuating environments, e.g., see
[1]. However, few connections exist between controlled, replicated experimental data and rigorously validated
models.

An exception is the controlled laboratory experiment of Jillson [2] and the subsequent model-based explanation,
predictions, and further experimentation of Henson and Cushing [3], Costantino et al. [4], and Henson et al. [5].
Jillson placed flour beetles in volumes of flour that periodically alternated between 32 and 8 g every two weeks.
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The control cultures remained in a constant volume of 20 g. Total population numbers in the alternating habitat
were more than twice those in the constant habitat even though the average flour volume was the same in both
environments.

Henson and Cushing [3] and Costantino et al. [4] extended the modeling hypotheses of the LPATribolium
model of Dennis et al. [6,7] and Costantino et al. [8,9] to include habitat periodicity. The resulting “periodic LPA
model” explained the increased average biomass observed in the 32–8 g habitat as a type of resonance in which
the inherent biological oscillation resonates with the periodic habitat [4]. Furthermore, the periodic LPA model
generated unexpected new predictions which were then tested in the laboratory [5]. When the relative amplitude
of oscillating flour volume in the periodic LPA model was set at 40% to simulate a 28–12 g alternating habitat, the
model predicted multiple attracting final states: two different 2-cycles out of phase with each other and differing
in average magnitude of animal numbers. This model forecast was successfully tested in the laboratory by placing
beetle cultures in the different (model predicted) basins of attraction of the two locally stable 2-cycles.

The resonance and multiple attractor predictions of the periodic LPA model constitute one incarnation of a general
nonlinear phenomenon. This paper presents general results concerning multiple attractors and resonance in periodi-
cally forced discrete dynamical systems. The contextual application will be periodic habitats in population biology.

Discrete autonomous (semi)dynamical systems with periodic solutions admit multiple oscillatory solutions in the
advent of periodic forcing. In general, the multiple cycles are mutually out of phase, and some of the cycle averages
may increase with the forcing amplitude while others decrease. In terms of population biology, a population which
cycles in a constant habitat is predicted to have multiple attracting oscillatory final states in the presence of habitat
periodicity. The multiple cycles differ in phase, and may differ in average total population size as well. Thus,
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LetB denote the set ofp
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Note the identity

xi0.t + j/ = x
.i+j/modp
0 .t/: (4)

If p is the minimal period ofx0
0, then thep phase shiftsx0

0; x
1
0; : : : ; x

p−1
0 will be distinct. If the minimal period is

q < p; then the firstq phase shiftsx0
0; x

1
0; : : : ; x

q−1
0 will be distinct, while the rest will be duplicates under the

identityxj0 = xj modq
0 : In this case identity (4) becomes

xi0.t + j/ = x
.i+j/modq
0 .t/: (5)

Stability results will require a hyperbolicity assumption:
(A4) The matrix

0∏
t=p−1

Fx.1; x
0
0.t//;

whereFx is the Jacobian ofF , has no eigenvalues of modulus one.
A weaker hypothesis may be substituted for (A4) when results are independent of stability:
(A4*) The matrix

I −
0∏

t=p−1

Fx.1; x
0
0.t//

is invertible.
(A4) implies (A4*). Since the set of eigenvalues of the product matrixAB is the same as the set of eigenvalues

of BA [10], each of thep matrices
∏0
t=p−1Fx.1; x

i
0.t// = ∏0

t=p−1Fx.1; x
0
0.t + i//; i = 0;1; : : : ; p − 1; of

permuted Jacobian products has the same set of eigenvalues. This fact has two relevant consequences. First, since
(A4*) holds if and only if the matrix

∏0
t=p−1Fx.1; x

0
0.t// does not have an eigenvalue of one, assumption (A4*) is

equivalent to the invertibility of each of the matricesI −∏0
t=p−1Fx.1; x

i
0.t// for i = 0;1; : : : ; p−1. Second, since

the stability of the cyclexi0 depends on the eigenvalues of
∏0
t=p−1Fx.1; x

i
0.t//, all of the phase shifted solutions

x1
0; x

2
0; : : : ; x

p−1
0 must have the same stability properties when they are hyperbolic (see, e.g., [11], Theorem 9.14):

Theorem 1. Assume(A1)–(A4).The phase shifted solutionsx0
0; x

1
0; : : : ; x

p−1
0 are either all locally asymptotically

stable, or they are all unstable.

2.1. Multiple perturbed cycles

When small amplitude periodic forcing is introduced into the habitat of an oscillating population, the population
is perturbed to a new oscillatory state. The next theorem guarantees each phase shiftedp-cycle solutionx = xi0 of
the autonomous equationK.0;b; x/ = 0 is perturbed into a continuous�-branchxi� of p-cycle solutions of the
nonautonomous equationK.�;b; x/ = 0 as� is increased from zero.

Theorem 2. Assume(A1)–(A3) and .A4∗/. Let i ∈ {0;1; : : : ; p − 1}. Then there exist� > 0 andγ > 0 and a
C1 function : .−�; �/ → Hn
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Proof. The result follows from the Implicit Function Theorem as long as the Frechét derivative ofK with respect
to x evaluated at� = 0 andx = xi0 is nonsingular, andK isC1 in x and�.

The Frechét derivatives ofK.�;b; x/ with respect tox and� are the linear operatorsLx : Hn
p → Hn

p and
L� : R → Hn

p defined by

111x 7→Lx {1x.t + 1/− Fx.1 + ��.t/; x.t//1x.t/}p−1
t=0 ;

1� 7→L� {−F�.1 + ��.t/; x.t//�.t/1�}p−1
t=0 ;

which are continuous inx and� by (A1).
The Frechét derivative ofK.�;b; x/ with respect tox evaluated at� = 0 andx = xi0 is the linear operatorL

defined by

111x
L7→{1x.t + 1/− Fx.1; x

i
0.t//1x.t/}p−1

t=0 :

If w ∈ Hn
p is in the kernel ofL, it must satisfy the recursion formula

w.t + 1/ = Fx.1; x
i
0.t//w.t/

for t = 0;1; : : : ; p − 1. Thus

w.0/ =

 0∏
t=p−1

Fx.1; x
i
0.t//


w.0/

and so
I −

0∏
t=p−1

Fx.1; x
i
0.t//


w.0/ = 0:

SinceI − ∏0
t=p−1Fx.1; x

i
0.t// is invertible by assumption (A4*),w.0/ = 0; which impliesw = 0: Hence the

operatorL is nonsingular. �

Denote .�/ = xi�. Then for small�; xi� is aC1�-branch of solutions ofK.�;b; x/ = 0 for which lim�→0xi� =
xi0. The branch may be expanded in� asxi� = xi0 + ui� + O.�2/. Properties of the first-order termui will play a
large role in our study of the perturbed cycles.

If the inherent cyclex0
0 has minimal periodq ≤ p; then theq distinct phase shifted solutionsxi0 are perturbed

into q distinct branchesxi� of p-cycle solutions as� increases from zero. By continuity, the cycles on each branch
xi� are in phase with the parent cyclexi0; hence, theq distinctp-cycles are mutually out of phase. Furthermore, if
assumption (A4) holds, then by an eigenvalue continuity argument theq perturbed cycles are locally asymptotically
stable (unstable) ifx0

0 is locally asymptotically stable (unstable).
Now suppose the inherent cyclexi0 has minimal periodq and the input oscillationb has minimal periodr. The

smallest value ofp for which Theorem 2 applies is the least common multiple ofq andr:p = lcm.q; r/. Thus,
the inherentq-cycle is perturbed intoq out of phasep-cycles as� increases from zero. Two questions are in order.
First, what is theminimal x
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The autonomous map (� = 0) has exactly one periodic solution: the equilibriumx = 0 (periodq = 1). When
forcing of minimal periodr = 2 is introduced into the map (� > 0), the equilibriumx = 0 remains as the only
periodic solution. In particular, there are no solutions of minimal period 2= lcm.1;2/. The problem is that the
functionF.�; x/ = 3�x is independent of� whenx = 0. These kinds of degeneracies are ruled out ifF , when
evaluated at the inherent cycle, is invertible as a function of�. This is condition (6) in the next lemma and theorem.

With regard to the second question, condition (6) also implies gcd.q; r/ of the perturbed cycles are distinct
modulo phase shifts, where gcd.q; r/ denotes the least common divisor ofq andr. We now turn to the proof of
these remarks.

Lemma. Assume(A1)–(A3) and (A4*). Suppose thexi0 have minimal periodq and b has minimal periodr,
and thatxi�; i = 0;1;2; : : : ; q − 1; are theq perturbed branches ofp-cycles guaranteed by Theorem 2, where
p = lcm.q; r/. Assume further that

F.�1; x
i
�.t// = F.�2; x

i
�.t// ⇒ �1 = �2; (6)

for all t and all i = 0;1;2; : : : ; q − 1 and all sufficiently small�. Then for sufficiently small�; a phase shift
xi�.t +m/ of a solutionxi�.t/ of (2) is itself a solution if and only ifm is a multiple ofr.

Proof. Consider the phase shiftz�.t/ = xi�.t +m/; with m = kr andk ∈ {0;1;2; : : : ; .p=r/− 1}. Then

z�.t + 1/ = xi�.t + kr + 1/ = F.1 + ��.t + kr/; xi�.t + kr// = F.1 + ��.t/; z�.t//;

and soz�.t/ is a solution.
Conversely, ifz.t/ = xi�.t +m/ is a solution, then

F.1 + ��.t/; xi�.t +m// = F.1 + ��.t/; z.t// = z.t + 1/ = xi�.t +m+ 1/
= F.1 + ��.t +m/; xi�.t +m//

for all t , and so�.t/ = �.t +m/ for all t by (6). Hencem is a multiple ofr sinceb has minimal periodr. �

Theorem 3. Under the assumptions of the preceding lemma, for sufficiently small� the perturbed cyclesxi�
have minimal periodp = lcm.q; r/. Moreover, modulo phase shifts, gcd.q; r/ of these perturbed cycles are
distinct.

Proof. Supposexi� has minimal periodm. Then

F.1 + ��.t/; xi�.t// = xi�.t + 1/ = xi�.t +m+ 1/ = F.1 + ��.t +m/; xi�.t +m//

= F.1 + ��.t +m/; xi�.t//

for all t , and so�.t/ = �.t +m/ for all t by (6). Sinceb has minimal periodr, we concludem must be a multiple
of r. Also, lim�→0xi� = xi0 has periodm by continuity, and sommust also be a multiple ofq sincexi0 has minimal
periodq. Sincexi�fffi.t +m/; x

�γ
0.7222 01γ
0.0∞/0
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For example, suppose the inherent 6-cycle.q = 6/ with phasesx0
0; x

1
0; : : : ; x

5
0 is perturbed by 4-periodic forcing

.r = 4/ into six out of phase 12-cyclesx0
�; x

1
�; : : : ; x

5
�.p = lcm.6;4/ = 12/. Then there are gcd.6;4/ = 2

equivalence classes modulo phase shifts:{x0
�; x

4
�; x

2
�} and{x1

�; x
5
�; x

3
�}.

Roughly speaking, Theorem 3 says the result of forcing with minimal periodr an inherent oscillation of minimal
periodq is the creation ofq out of phase cycles of minimal period lcm.q; r/ which live on gcd.q; r/ different
attractors. Two extremes deserve mention. First, if an inherent cycle of minimal periodp is forced with minimal
periodp, the result isp out of phasep-cycles, none of which are related by phase shifts. Second, if an inherent
cycle of minimal periodq is forced with minimal periodr whereq andr are relatively prime, the result isq out of
phaseqr-cycles, all of which are phase shifts of each other.

Thus if a population oscillates with minimal periodq in a constant habitat, it will, according to its initial state,
settle on one ofq possible out of phase oscillations when it is placed in a habitat fluctuating with small amplitude
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or

xi�.t/ = xi0.t/+ ui.t/� + O.�2/ = x0
0.t + i/+ ui.t/� + O.�2/

for all t .
Thus, the resonance or attenuation ofxi� at� = 0 is determined by

ddxi�e
d�

∣∣∣∣
�=0

= 1

p

p−1∑
t=0

ddxi�.t/e
d�

∣∣∣∣
�=0

= 1

p

p−1∑
t=0

⌈
dxi�.t/

d�

∣∣∣∣
�=0

⌉
= 1

p

p−1∑
t=0

dui.t/e = duie:

If duie > 0; xi� is resonant at� = 0; if duie < 0; xi� is attenuant. Ifduie = 0, higher order terms must be calculated.
For example, this is generally the case when a system at equ1 Tffl
0.4a-233.5(ti[sWTDfl
(0)Tjfl
9.963 0 0 9.963 178.5b 9.963 295.217 6-233.963 0 0 9.963 gher)-196.1(order)-196.1(term/F3fl
[(is)-196.1(res56)01e81odic.1(res56forcing..1(res56C)-233.5ionnerallTDfl
[(of.1(50 -1.3 TDfl(50 5(o)0(r(50 5(e)15((50 can5((50 s)-2(50 a-2(50 dif)25(D)Tj233t-2(50 problem.-2(50 case)-233.5(w50 som)-2(50 helpful(r(50 5(chniques,5(w50 se)-2(50 [3,12]enerall1(the)-233.5(W)80()-2(50 wish(r(50 5o-2(50 de5(e)in)-2(50 ti[sWT50 sign5((50 o 0 0 7.572 234.4573 0 62fl
(i)Tjfl
/F1 1 Tffl
9.963 0 0 9.963 349.042 602.179 Tmfl
0.2778 Tcfl
(eD)2jfl
72 256
ET41(<)Tjfl
/F7 1 Tffl
1.0578 0 TDfl
(0)Tjfl
/F)-2fl
(2563.33 0 0 9.e1(must)-196.1(b0 0 9.963 34(u)5((50 SinceTDfl
0.006 Tcfl
[( 1 5.796 Tmfl[(K)-80(.TJfl
;TDfl
0.004 Tcfl
[( 10.5(ff)Tjflb72 270.591 605.7965(ff)Tjflfl
-0.0184 -0.8316 TDfl
(ff)Tjfl
/F7 1 Tffl
9.963 0 0 9.963 277.530
7.6.156
ET41(<)Tjfl
/F7 1ttenuant.)-196.1(If)]TJfl
/F1 1-6(,)-196.1(highe08Dfl
12563.33 0 0 9./63 354.083 642.4320 9.9Dfl
0 Tcfl
(d)Tj11F2 1 Tffl
7.572 0 0 7.572 270.591 605.796 Tmfl
(i)Tjfl
-0.018-196.1(b0 58fl
(i)Tjfl
ti[s2 270.591 605.8 l5.796 Tmflfl
/F7 1TDfl
(0)Tjfl
/F1 1 T67.5.156
ET41(<)Tjfl
/F7 1tten789t.)-196.1(If)]TJfl
/F1 1-6(,)-196.1(highe6432i)T563.33 0 0 9(u)Tjfl
/F2 1 Tffl
7-196.1(be)369.963 34(u,)-233T50 s.5isfy-2(50 ti[sWT50 recursionnWT50 form33.TDfl
0.006 Tcfl
[(-2114Tjfl -2
7.266 Tmflfl
/F7 1TDfl
(0)Tjfl
/F1 19
/F72 5fl
ET9(<)Tjfl
/F7 1tten789t.)-19741(If)]TJfl
/F1 1-6(,)-196.1(high1(or 63 5fl22 1)572TDfl
(0)Tjfl
/F1 1 T67.5.156
ET41(<F7 1tt3T50 963 .5.156
ET 0 0 7.572 270.59102 .5.156
E1
(i)Tjfl
-0.018-196.5.156
E.9Dfl
0 Tcfl
(d)Tj11F2 1 Tffl
7.572 0 0 7272 270.591 605.796 T.454be)-19F. 0 0 7.572 270.59146.5.156
3 0 0 919Dfl
0 Tcfl
(d)Tj11722 .5.156
ET 0 0 7.272 270.59102 .5.156
[high1(30.-2(5)-701(be)369.2 23789719
fl -2
 256
ET41(<)Tjfl
/fl
[546.789t.)-19741(If)]TJfl
/F1 1-6(,)-196.1(high1(or 63 5fl22 1)572TDfl
21fl
/F
/F1 1 T67.5.1.1(be)369./:963 34(u,)-233T5319675 605.8 l5(8)If)]TJ47 134fl
(0)Tjfl
/F1 [(Doblem.ferentiecung Tcfl8fl
[both Tcfl8fl
[sides Tcfl8fl
[o)0(r(8fl
[Eq.0(r(8fl
[(8)I(r(8fl
[with Tcfl8fl
[0.0p6)0 Tcfl8fl
[ ti6 Tmfl[(K)-80(.TJ117709ffl
1.7872 0 TDfl
0 Ti[s2 270.58695.5.156
[hand Tcfl8fl
[elem.vlem.aluecung Tcfl8fl
[190.1(i)6(f)]TJfl
/791 66ffl
1.7872 0 TDfl
0 T7 1tt3T50 902.968 Tmfl0.444 0 TDfl
(u)Tjfl
/726.5.156
[h
[(264fl
[3.5duces Tcfl8fl
[a Tcfl8fl
[nonhomoTDfl
ous Tcfl8fl
[l5((ar3.5(cas31967430 wish(r(50 TDfl
0.006 Tcfl
[(-2114TjTcfl
[(-2jTcfl
[-2(5ri[sWT50 can5((50 s)-2(50:i6 Tmfl[(K)-80(.TJfl
(0)Tj7
0.2778 Tcfl
 5fl
ET9(<)Tjfl
/F7 1435 4)Tj138-19741(If)]T3 5fl22 1)572TDfl
(011719 48erm247.5.156
ET41(<F7 1tt3T50 963 .5.156
ET 0 0 7.572 270.59102 .5.156
E1
(i)Tjfl
-0.018-196.5.156
E.9Dfl
0 Tcfl
(d)Tj11F2 1 Tffl
7.572 0 0 7272 270.591 605.796 T2(5Tcfl
 5fl
ET9(<)Tjfl
/F148.6 48)Tjfl
.5.15xIf)]T3 5fl22 1)572TDfl
(5 Tf38-48erm247.5.156TDfl
0 Ti[s2 270.5373.5.156
E1
(i)Tjfl
-0.018-196.5.156
.450.830 0 9;9
/F72 5fl
ET9(<)Tjfl
/F172jfl
3 4)Tj138-19743 0 0 9iTDfl
0 Ti[s2 270Jfl
/F1 1-6(935 696 Tmfl
(i)Tjfl
-0.018-3 5fl22 1)572TDfl
(7691 4-48erm247.5.1.1(be)369./u
fl -2
 256
ET41(<)Tjfl
ly)-628 4)Tj138-19741(If)]T3 5fl22 1)572TDfl
(972T13-48erm247.5.1.1(be)369.2fl
(i)Tjfl
/F1 1 TTf36 .5.156
ET 0 0 7.272 270.59102 .5.156
2(5Tcfl
 5fl
ET9(<)Tjfl
/F1(mu507 48)Tj2)-19741(or 63 5fl22 1)572TDfl
234 1t3-48erm247.5.156TDfl
0 Ti[s2 270.5373.5.156
E1
(i)Tjfl
-0.018-196.5.156
.450.830 0 9;9
/F72 5fl
ET9(<)Tjfl
/F25 Tf28 4)Tj138-19743 0 0 9iTDfl
0 Ti[s2 270Jfl
/F1 1-6(935 696 Tmfl
(i)Tjfl
-0.018-3 5fl22 1)572TDfl
257916-48erm247.5.1.1(be)369./-2(5)-701(be)369.:963 34(u,)-233T5F7 8586ffl
1.7872(9)If)]TJ47 134fl
(0)Tj7h(r(50 BionnWT52(9)Ij233t-nd Tcfl0(identitionnWT52(4),2fl
(i)Tjfl
/F1 1 Jfl
(0)Tj7
0.277�fl
(i)Tjfl
-0.018-19605.796 T2(5Tcfl
 5fl
ET9(<)Tjfl
/F107 1 3-489t6fl
.5.15xIf)]T3 5fl22 1)572TDfl
(1fl
7fl
/448.1247.5.156TDfl
0 Ti[s2 270.5373.5.156
E1
(i)Tjfl
-0.018-196.5.156
.450.830 0 9;9
/F72 Ti[s2 270 5fl
ET9(<)Tjfl
/F1272TD6-452.239-19743 0 0 90If)]TJfl
/F1 1-6(934 696 Tmfl
(i)Tjfl
-0.018-3 5fl22 1)572TDfl
(34 295.448.1247.5.156
ET41(<F7 1tt3T50 963 .5.156
ET 0 0 7.272 270.59102 .5.156
[hi)-669./u
fl -2
 256
ET41(<)Tjfl
l7ffl
1 1452.239-19741(If)]T3 5fl22 1)572TDfl
(73.768.448.1247.5.1.1(be)369.2fl
(i)Tjfl
/F1 1 TTf36 .5.156
ET 0 0 7.272 270.59102 .5.156
28 Tcfl
 5fl
ET9(<)Tjfl
/F202jfl
51452.239-19741(If)]T3 5fl22 1)572TDfl
/fl
[86f448.1247.5.156
ET41(<F7 1tt3T50 963 .5.156
ET 0 0 7.572 270.59102 .5.156
E1
(i)Tjfl
-0.018-196.5.156
E.9Dfl
0 Tcfl
(d)Tj11F2 1 Tffl
7.572 0 0 7272 270.591 605.796 T2(5Tcfl
 5fl
ET9(<)Tjfl
/F25 T-19489t6fl
.5.15(or 63 5fl22 1)572TDfl
2fl8fl3j7
448.1247.5.156TDfl
0 Ti[s2 270.5373.5.156
E1
(i)Tjfl
-0.018-196.5.156
.450.830 0 9;9
/F72 Ti[s2 270 5fl
ET9(<)Tjfl
/F27Tjfl6 .452.239-19743 0 0 90If)]TJfl
/F1 1-6(934 696 Tmfl
(i)Tjfl
-0.018-3 5fl22 1)572TDfl
281(,<F7 1tt3T50 963 .5.156
ET 0 0 7.272 270.59102 .5.156
[hi 5 beu,10)If
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and

D = diag[F�.0/; F�.1/; : : : ; F�.p − 1/];

with

F�.t/ = diagF�.1; x
0
0.t//

and

vi =




ui.p − i/

ui.p − i + 1/
:::

ui.2p − i − 1/


 ;

1 =




1
:::

1


 ∈ Rn;

bi =




1�.p − i/

1�.p − i + 1/
:::

1�.2p − i − 1/


 :

Here the JacobiansFx.t/ and the identityI aren×nmatrices, and so the block matrix999 isnp×np: F�.1; x0
0.t// is

a column vector inRn; soF�.t/ is ann×n diagonal matrix with the elements ofF�.1; x0
0.t// on the diagonal. Thus,

D is anp × np diagonal matrix.vi andbi are column vectors inRnp: Note that
∑p−1
i=0 bi = 0 anddvie = duie.

It is straightforward to check that [999]−1 = MP, where

M = diag




I −

j∏
t=p−1+j

Fx.t/




−1


p−1

j=0

;

P =




∏1
t=p−1Fx.t/

∏2
t=p−1Fx.t/ · · · Fx.p − 1/ I

I
∏2
t=pFx.t/ · · · Fx.p/

Fx.p + 1/ I · · · ∏p

t=p+1Fx.t/
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Proof.

p−1∑
i=0

duie =
p−1∑
i=0

dvie =
p−1∑
i=0

dMPDbie =

MPD

p−1∑
i=0

bi


 = d0e = 0:

Thus, there existj; k ∈ {0;1; : : : ; p − 1} such thatduj e > 0 andduke < 0. �

In our application, Theorem 4 asserts that (generically speaking) the average total population size for at least one
of the multiple attracting oscillatory states in the periodic habitatexceedsthe total population size in the constant
habitat. Furthermore, at least one of the multiple attracting states in the periodic habitat has average total population
size less thanthat in the constant habitat. These results hold only for “small” forcing amplitudes; however, in
many situations the resonant and/or attenuant cycles may persist for significantly large values of�, as illustrated in
Examples 1 and 2.

3. Example 1: a one-dimensional map

Let F : R1+ × R1+ → R1+ be the generalized Ricker mapF.�; x/ = b�xe−cx + .1 − �/x, and�.t/ = .−1/t . In
this example,n = 1 andp = 2. Eq. (2) becomes

x.t + 1/ = b[1 + �.−1/t ]x.t/e−cx.t/ + .1 − �/x.t/:

x.t/ is the population size at timet; � the per capita probability of dying during one time interval, e−cx.t/ the
fractional reduction of new recruits due to density dependent effects, andb[1 + �.−1/t ] the seasonal recruitment
rate, which fluctuates around an average ofb with periodr = 2 and relative amplitude� ∈ [0;1/.

When� = 0; the autonomous model predicts 2-cycles at many values of its parameters.q = 2/. For example,
if b = 40; c
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Fig. 1. 2-cycle solutions of the periodically forced Ricker-type map, shown as functions of amplitude�. When� = 0, there are two stable
2-cycles which are simply time shifts of each other, and an unstable fixed point. As� increases from zero, one of the two locally stable 2-cycles
increases in average (solid lines), while the other decreases in average (dashed lines). The unstable fixed point is perturbed into an unstable
2-cycle (dotted lines). The attenuant stable cycle and the unstable cycle annihilate each other in a saddle-node bifurcation, while the resonant
stable cycle persists for all� < 1.

In this example the dynamical systemx.t + 1/ = F.�; x.t// is the periodic LPA model



L.t + 1/

P .t + 1/

A.t + 1/


 =




bA.t/exp

(−cel

�
L.t/− cea

�
A.t/

)

.1@

bA.t/exp

(−ea

�
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Fig. 3. Model predictions (including transients) for each of the six treatments, shown in L-stage time series and composite phase space. The
squares correspond to times when flour volume is high. The solid circles in phase space represent equilibria of the first composite map. The
upper (lower) composite fixed point for� = 0:4 corresponds to the resonant (attenuant) 2-cycle.

The model therefore predicts three asymptotic regimes as indexed by the relative amplitude� of the habitat
fluctuation: for� = 0, the stable cyclex0

0 and its time shiftx1
0 of opposite phase; for 0< � < �0, the locally stable

resonant and attenuant cyclesx1
� andx0

�, respectively; and for� > �0, the stable resonant cyclex1
�.

We studied three habitat sequences: a constant 20 g habitat (� = 0), an alternating 28–12 g habitat (� = 0:4), and
an alternating 32–8 g habitat (� = 0:6). In each of the three habitats, we used two initial conditions, [150;200;150]T

and [150;0;150]T, for a total of six treatments. There were three replicates in each of the six treatments for a total
of 18 cultures. The detailed experimental protocol appears in [5].

The model predictions for each of the six treatments appear in Fig. 3. The model trajectories are presented both
as time series and as orbits in “composite” phase space. The latter are actually orbits of the (autonomous) first
composite map, and correspond to every other step of the time series. Black squares correspond to times when the
flour volume is high. When� = 0; the model orbits for both initial conditions approach the inherent cyclex0

0. When
� = 0:4; the initial condition [150;200;150]T lies in the basin of attraction of the resonant 2-cyclex1

0:4, while
[150;0;150]T lies in the basin of attraction of the attenuant 2-cyclex0

0:4. When� = 0:6, both initial conditions lead
to model orbits approaching the resonant cyclex1

0:6.
Fig. 4 presents the first 40 weeks of data from six replicates, organized in the same format as Fig. 3. The multiple

cycles are seen clearly in the data when� = 0:4. The complete results of this experiment and those of a follow-up
experiment are reported in detail in [5].
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M =
(

[I − Fx.1/Fx.0/]−1 0

0 [I − Fx.0/Fx.1/]−1

)
;

P =
(
Fx.1/ I

I Fx.0/

)
;

By Eq. (11) and the program Maple,

v0 =
(
u0.0/

u0.1/

)
=







−162:2

3:700× 10−4

−242:8







4:656× 10−4

−128:8

−218:5






;

and

v1 =
(
u1.1/

u1.0/

)
=







162:2

−3:700× 10−4

242:8





−4:656× 10−4

128:8
218:5






:

Hence

u0 =
(
u0.0/

u0.1/

)
=







−162:2

3:700× 10−4

−242:8







4:656 × 10−4

−128:8

−218:5






;

u1 =
(
u1.0/

u1.1/

)
=







−4:656× 10−4

128:8

218:5







162:2

−3:700× 10−4

242:8






:
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